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SECTION 1
INTRODUCTION

This report presents scaled numerical solutions for the one dim-
ensional time-dependent SGEMP electron emission boundary layer problem in the
two cases in which the incident X-ray flux is either linearly rising in time
(a linear ramp) or is constant in time starting at t=0 (a step function).
Two electron energy spectra are considered in each case, an exponential
spectrum, and a linear-times-exponential spectrum. The electrons are as-
sumed to be emitted with a cos® angular distribution. The scaled solu-
tions given here provide the solutions to real problems with these energy
spectra for arbitrury X-ray flux rise rates (for the linear ramp) or arbi-
trary fluxes (for the step function).

Most X-ray pulses start off rising linearly in time. In many
cases, especially at high fluences or long rise times, much of the interest-
ing boundary layer dynamics is taking place while the pulse is still linearly
rising. Since a single solution suffices for all rise rates during this
portion of the pulse, it is worthwhile to present this solution.

In addition, if the pulse rise time is very short compared to an
electron turnaruvund .'"» and compared to the subsequent time over which the
remainder of the pulse vari:s significantly, then the bounderv I....: wili
behave approxi irely as if the Y-ray pulse were a step function. We also

present the solu -on {or this cuse.

The scaled e, *‘“ous controlling the boundary layer were pr.. nted

in Refereuce 1. There it was saow.' thut if t* a-ray pulse rises in time

! Longmire, C. L., and N. J. Carron, Scaling of the Time-Dependent SGEMP

Boundary Layer, Mission Research Cerporation, MRC-R-262, DNA 3975T,
April 1976 (U).
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like a power of time

P
= R 1
F pt (1)

where
0Osp<w ()

F is the incident flux (cal/cmzlsec), and Rp a constant, then the solu-
tion scales completely. For a given electron energy spectrum and given p,
a single solution suffices for all Rp. The solutions given here correspond

to p=1 (R, is the flux rise rate) and Ps0 (R_ is the constant flux).

1 0

The solution is a one-dimensional one and should be meaningful
out to distances small compared to the lateral dimensinns of the target.

We give plots of electric field, potential, number density, and
current density as a function of position and time. These are presented
both as a function of x (distance from the target surface) for various
times, and as a function of time for various X. In addition the dipole
moment per unit area of the layer, and its first and second time derivatives
are given as a function of time. The spatial integral of the current density
is the same as the time derivative of the dipole moment.

The current densities given here may be useful as prescribed cur-
rents in Maxwell solving codes. The second time derivative of the dipole
moment may be useful for estimating dipole radiation. The dipole moment
may be useful for estimating distant quasi-static dipole fields.
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SECTION 2
COMPUTATION METHOD

The numerical solutions were obtained with the one dimensional
particle moving code SCAL1D.? Time and length scales are determined by
the naturally occurring electron plasma properties. Times are measured
as multiples of an effective plasma period Tp given by

—
T = (3)
P 4Tre2N1

where m(e) 1is the electron mass (charge) and N1 is an average surface

nunber density, and lengths are measured as multiples of an effective plasma
Debye length

AsVT 4
P 4)
where Vv 1is the average normal vel~ ity of the emitted electrons. These
times and lengths are scaled out before beginning computation, so computed
times and lengths are on the order of unity. Similarly the dependent dy-
namical variables have a natural magnitude which is factored out.

If the pulse is linearly rising, N1 in Equation (3) is itself
time dependent, so that Equation (3) as it stands does not define a time
unit. In the general case, Reference 1 shows that a plasma period can be

taken to be

2 Carron, N. J., Descriptinon of the Code SCALID for Calculating the One-

Dimensional SGEMP Boundary Layer, Mission Research Corporation, MRC-R-267,
May 1976 (U).
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T = v _ (5)
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where Y {is the material yield (elec/cal).

We assume the emitted electrons have a cosf angular distribu-
tion, where 0 1is the polar angle measured from the normal. The shapes
of the two energy spectra we consider are shown in Figure 1. If the elec-
tron energy spectrum is exponential

e E/E (elec/keV) (6)

=1L

wal3
4

| |~

where E 1is the electron energy and E is the exponentiation energy, then
the average normal velocity is

- 2m B
VN . (7)

If the spectrum is linear-times-exponential

%% ~ ‘ﬁiz e'E/E - (elec/keV) , (8)
then

— mE

v a\LE (9

In the code we have chosen a very small time step, £ 0.02 T . At
all interesting times there were several thousand particles in the first
few Debye lengths. The particles were given a finite length of 0.2 Debye
length for the purpose of computing the charge density and current density.
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These quantities were further averaged over three spatial cells with 2 sim-
ple weighting scheme. The cell size was ~0.1 Debye length, and there were
always several hundred particles in each cell.

The current density J(x,t) was computed as the sum of particle
weights times their velocities, rather than as 3E/3t where E is the
electric field. At later times when J 1is small and due to approximately
equal numbers of particles with positive and negative velocities, irregu-
larities and oscillations occurred whose precise value was dependent on
the time step, emission particle weighting scheme, etc. In the plots pre-
sented here we show an average smooth dashed line through these unreliable
values. The plots of current density vs. time at various X were some-
times constructed from 9E/dt when this method was more reliable.
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SECTION 3
LINEARLY RISING PULSE, EXPONENTIAL SPECTRUM

v s

In this section we present results for a linearly rising time
history (p=1) and for the exponential energy spectrum, Equation (6).

In the following equations we give dimensional units for the
dynamical variables. When numbers are given in the equations, we use these

units for E} Y, and Rl:

A sk e

;. -“ s ks,

Electron exponentiation energy E (keV)
Yield Y (elec/cal)
X-ray rise rate Rl (cal/cmz/secz)

Equations (5) and (7) show the time unit to be

1/3

:] * T m E

i & P 6VIT % ¥ R,

: ! = 11/3
[
- ; = 0.7035 [g—] sec (10)
£ ] 1

and the unit of length, Equation (4), is

[ ;
- | s [ B2 /3
- A= 7,796 x 10° | —— cm (11

ek Bl e e
prompErpera

i rekht T

Sk s

Y Ry
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The units of electric field (El) and potential (¢1) are taken to be

e mas et
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The units of number

The units of dipole
(51) are

e
a

Finally, the second

unit

mv
eT
P
8.955 x 1075 [E Y R1]1/3 Volts/m , (12)
21 E
A e
698 E Volts (13)

density (Nl) and current density (Jl) are

2 2]1/3
YR, T Y2 R
—L P.g.349 x 10710 |1 en™S (14)
v E

e N,V = 1.126 X 10'15[Vﬁf y? Rf]l/3 Amps/m® . (15)

moment per unit area (Pl) and its time derivative:

2 E
e A" N, ® 15q
6.181 x 10°F Coul/m , (16)
Py -9 [=5/2 1/3
5 = 8.786 X 10 [E Y Rl] Amps/mn . (17)
p

time derivative of the dipole moment per unit area has

~3 =}
o] Nib—‘

= 1.249 x 1078 [E Y R1]2/3 Amps/m/sec (18)

10




For example, if E = 5 keV, the material yleld is Y = 5 x 1012

13

elec/cal, and the flux is rising at a rate Rl = 10 cal/cmz/sacz. then

T = 2.50 ns
A =6.19 cm

E. = 5.64 x 10* V/m

¢, = 3.49 kV

£ 5.4 x 10 em™>

2

N
J. = 2.00 X 10° Amps/m®

8

P. = 3.09 x 10 ° Coul/m

X 9

(
} P. = 12.38 Amps/m
E P. = 4,96 x 10

Amps/m/sec

Figures 2 through 9 show the electric field, potential, number
| density, and current density as a function of distance from the surface and
time, scaled to A and Tp; and Figures 10 through 12 shuw the layer's
dipole moment per unit area and its first two time derivatives. The units
are those of Equations (10) through (18). -
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Figure 5.

Current density vs. x at various times
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Figure 9. Current density vs. time at various x.
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SECTION 4
LINEARLY RISING PULSE, LINEAR-TIMES-
EXPONENT IAL ENERGY SPECTRUM

~ This section presents results for a linearly rising time history
(p=1) and for the linear-times-exponential energy spectrum, Equation (8).

E, Y, and R} are in the same units as in the previous section (keV, cal'l,
cal/cmzlsec ).
Equations (5) and (9) show the time unit to be
=11/3
1, [ ]
P Lavame 1
= |1/3
= 0.8053 3[51 sec . (19)
Y R1
and the unit of length is
=2T/3%
P lise‘m
9 -E-2 1/3
= 1,339 x 10 TR cm . (20)
1
The units of electric field (El) and potential (¢1) are
Y [2ng 1/3
E, " o7 [2'rr eEYRl]
p
-1.173x1o'4[EY Rl]l“ Volts/m (21)

20




mE
oy =rE =3¢
=1.5711%x 10°F  Volts . (22)
The units of number density (Nl) and current density (Jl) are
YR, T
N a __—1——2
1 v
- 1/3
0 (YR -3
= 4,845 x 10 - cm , (23)
B
J1 L N1 v
= 1.290 x 10713 [\li y? Rf]”” Anps/ 1 (24)
The units of dipole moment per unit area (Pl) and its time derivative
(Pl) are
oAl N = E
P1 e A N1 Be
=1.391 x 10 § coul/m (25)
2 p1 -8 |=5/2 1/3
P, = === 1,727 X 10 [E YR ] Amps/m (26)
1 Tp 1

The units of second time derivative of the dipole moment per unit area is

o P -8 [-
Py "Tl = 2.144 % 1078 [E Y R1]2/3 Anps/m/sec . (27)
P

Figures 13 through 23 show the dynamical solutions for the case of a linearly

rising time history and a linear-times-exponential energy spectrum, using the
units of Equations (19) through (27).
21
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SECTION 5
CONSTANT PULSE, EXPONENTIAL 'SPECTRUM

In this section we present results for a constant X-ray pulse
(p«0) and for the exponential energy spectrum, Bquation (6).

We give here the dimensional units for the dynamical variables.
When numbers are given we use these units for E, Y, and R,

Electron exponentiation energy E (keV)
Yield Y (elec/cal)
X-ray flux Ro (cal/cmz/sec) .

Equations (5) and (7) show the time unit to be

Ry I

P lev2m e Y R
o)

%
= 0.5901 | == sec (28)

YRO

and the unit of length is

A._l_[_l. (L_E'f._'”z
313 2m 2
e YROJ

§3/2 172

— cm (29)
YRy

= 6.539 x 108[

30
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The units of electric field (Bl) and potential (01) are

- Ar = 1/2 ?
B, = LY -1.068x1o4[\lavn] V/m, (30)
1 e Tp o . .
= I—Z-E:B-I B
01 A B, 5 o 698 E  Volts . (31)

The urits of number density (Nl) and current density (Jl) are

YR YR
Ny = —2=9.025x 10710 =2 (32)
v \/E
| J = « 1015 2 i
L "N Vw1.602x10"° YR Anps/m (33)
; ]
i The units of dipole moment per unit area (Pl) and 1ts time derivative '§
! [ i x]
% (P)) are ! i
| Ppme "N =15 ;
| =6.181 x 10°°F cCoul/m (34)
. P -8 [=3/2 1/2 :
P1 = Tr-- 1,047 x 10 [E Y Ro] Amps/m (35) :
P ;
| The second time derivative of the dipole moment per unit area 651) has f
! unit
o '51 -85
P1 .5 1.775 X 10 E Y Ro Amps/m/sec (36)
: P

31
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For example if E = 5 keV, Y = 10"~ elec/cal, and the flux is

Ro " 10s cal/cmzlsec. then
T, = 0.88 ms
A = 2.19 en
B, = 1.60 x 10° V/n
®, = 3.49 kV
N, = 4.04 x 10° en”
Jy = 1.60 x 10° Anps/n?
P, = 3.09 x 10" Coul/m
ﬁl = 35,01 Amps/m
B = 3.97 x 1010 Amps/m/sec .

Figures 24 through 34 give the dynamical solutions “»r the case
of a constant X-ray pulse starting at t=0 and an exponential electron
energy spectrum. The units are those of Equations (28) through (36).
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Figure 27. Current density vs. x at various times.
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Electric field vs. time at various x.
Potential vs. time at various x.

Figure 28.
Figure 29.




T e e M e e R

N/N,

10 l

-

U ARLLL
\

11|

1071

10

LI T T 77T

1073

LUtiiiig

1

[ ¥ S -

N-I - qu 32
Tp - Eq. 28
A -Eq. 29

Coetel 1 tonad LL‘IUIL L]

Figure 30.

Number density vs. time at various x.

38

—
o

i i



i
!
t/Tp
Figure 31. Current density vs. time at various x.
j
T 17T 1 T T T T
: 6~
5_ —
cL'_4F _T
o
3 -
; 2
i h— —
P, - Eq. 34

Q 2 4 6 8 10

Figure 32. Dipole moment per unit area vs. time.

39




0 2

Time derivative of dipole moment vs. time.
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SECTION 6
CONSTANT PULSE, LINEAR-TIMES-EXPOMENTIAL
ENERGY SPECTRUM

Here we present results for the constant pulse (p=0) and linear-
times-exponential energy spectrum, Equation (8). E, Y, and Ro are in the
same units as the previous section (keV, csl'l, éal/cmz/sec).

Equations (5) and (9) show the time unit is
nv /2
T |
P 4me” Y Ro

= 11/2
= 0.7227 [g] sec , (37)
o

and the unit of length is

_ o [£3/2 1172
A=y Tp = 1,201 x 10 ‘Y—To- cm (38)
The units of electric field (Bl) and potential (@1) are
— |
E, = 2V . 1.308 x 10'4[\/'€Y R ]1/2 V/im (39) :
1 e Tp o
mE
¢ *rAE 3%
= 1.571 x 10° E volts . (40)
'i a .



) . .

The units of number density (Nl) and current density (Jl) are

Y R YR
Ny= —2 =6.016x100 2 ™3, (41)
v VE
- ’ -15 -12
J1 =@ N1 vs 1.602 X 10 YR, Amps/m~ . (42)

The units of dipole moment per unit area (Pl) and its time derivative
(51) are

-e A2y =.E
e A" N 8e

Py 1
=1.301 x 10°%F coulrm (43)
. Py .8 [=3/2 1/2
By =z = 1,924 x 10 [n Y R ] Anps/m . (44)
p (o]

Finally, the unit of the second time derivative of the dipole moment per
unit area is

p
By =zt = 2.663 x 10°\E YR Amps/m/sec . (45)

1" T
P

Figures 35 through 45 give the dynamical solutions for the case

of a constant X-ray pulse starting at t=0 and a linear-times-exponential

energy spectrum. The units are those of Equations (37) through (45).
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Figure 37. Number density vs. x at various times.
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Figure 38. Current density vs. x at various times.
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Figure 39, Electric field vs. time at various x.
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Figure 40. Potentfal vs. time at various x.
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Figure 41. Number density vs. time at various x.
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